GeoDMA - Geographic Data Mining Analyst
نویسندگان
چکیده
Remote sensing images obtained by remote sensing are a key source of data for studying large-scale geographic areas. From 2013 onwards, a new generation of land remote sensing satellites from USA, China, Brazil, India and Europe will produce in one year as much data as 5 years of the Landsat-7 satellite. Thus, the research community needs new ways to analyze large data sets of remote sensing imagery. To address this need, this paper describes a toolbox for combing land remote sensing image analysis with data mining techniques. Data mining methods are being extensively used for statistical analysis, but up to now have had limited use in remote sensing image interpretation due to the lack of appropriate tools. The toolbox described in this paper is the Geographic Data Mining Analyst (GeoDMA). It has algorithms for segmentation, feature extraction, feature selection, classification, landscape metrics and multi-temporal methods for change detection and analysis. GeoDMA uses decision-tree strategies adapted for spatial data mining. It connects remotely sensed imagery with other geographic data types using access to local or remote databases. GeoDMA has methods to assess the accuracy of simulation models, as well as tools for spatio-temporal analysis, including a visualization of time-series that helps users to find patterns in cyclic events. The software includes a new approach for analyzing spatio-temporal data based on polar coordinates transformation. This method creates a set of descriptive features that improves the classification accuracy of multi-temporal image databases. GeoDMA is tightly integrated with TerraView GIS, so its users have access to all traditional GIS features. To demonstrate GeoDMA, we show two case studies on land use and land cover change.
منابع مشابه
Interpreting Images with Geodma
Object oriented analysis offers effective tools to represent the knowledge in a scene. Knowledge-based interpretation arises as an effective way to interpret remote sensing imagery. In this approach, human’s expertise is organized in a knowledge base to be used as input of automated interpretation processes, thus enhancing performance and accuracy, and reducing at the same time the subjectivity...
متن کاملMining Volunteered Geographic Information datasets with heterogeneous spatial reference
When the information created online by users has a spatial reference, it is known as Volunteered Geographic Information (VGI). The increased availability of spatiotemporal data collected from satellite imagery and other remote sensors provides opportunities for enhanced analysis of Spatiotemporal Patterns. This area can be defined as efficiently discovering interesting patterns from large data ...
متن کاملVisualization and Database Support for Geographic Meta-Mining
Introduction Geographic data mining can be defined as a set of exploratory computational and statistical approaches for analyzing very large spatial and spatiotemporal data sets. Data mining techniques are often grouped into categories that include clustering, categorization, summarization, rule-mining, and feature extraction. All of these types of techniques are generally oriented towards iden...
متن کاملAgentes de Mineração de Imagens de Satélite
Image Mining is a field with huge potential and relevant challenges. For satellite images, this technique and resources as well algorithms can bring appropriate responses to important problems. However, due to this approach limitations, multiagent systems present features that, properly applied, can bring advances on pattern analysis in satellite images. In this context, the goal of this resear...
متن کاملA Quantitative Analysis of a
Introduction The current trend in geographic information systems (GIS) is to move away from standalone systems to those that are distributed and can provide processing capability across a network. Additionally, GIS technology is finding its way into more applications and becoming a more ubiquitous technology. Many times, users are not even aware that they are using GIS technology. As these tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 57 شماره
صفحات -
تاریخ انتشار 2013